Phosphorylation of the BRCA1 C terminus (BRCT) repeat inhibitor of hTERT (BRIT1) protein coordinates TopBP1 protein recruitment and amplifies ataxia telangiectasia-mutated and Rad3-related (ATR) Signaling.
نویسندگان
چکیده
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase functions as a central node in the DNA damage response signaling network. The mechanisms by which ATR activity is amplified and/or maintained are not understood. Here we demonstrate that BRIT1/microcephalin (MCPH1), a human disease-related protein, is dispensable for the initiation but essential for the amplification of ATR signaling. BRIT1 interacts with and recruits topoisomerase-binding protein 1 (TopBP1), a key activator of ATR signaling, to the sites of DNA damage. Notably, replication stress-induced ataxia telangiectasia-mutated or ATR-dependent BRIT1 phosphorylation at Ser-322 facilitates efficient TopBP1 recruitment. These results reveal a mechanism that ensures the continuation of ATR-initiated DNA damage signaling. Our study uncovers a previously unknown regulatory axis of ATR signaling in maintaining genomic integrity, which may provide mechanistic insights into the perturbation of ATR signaling in human diseases such as neurodevelopmental defects and cancer.
منابع مشابه
Phosphorylation of ATR-Interacting Protein on Ser Mediates an Interaction with Breast-Ovarian Cancer Susceptibility 1 and Checkpoint Function
The signaling of DNA damage and replication stress involves a multitude of proteins, including the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), and proteins with BRCA1 COOH-terminal (BRCT) domains. The BRCT domain–containing proteins facilitate the phosphorylation of ATM/ATR substrates and can be coimmunoprecipitated with ATM or ATR. However, their mode of interac...
متن کاملPhosphorylation of ATR-interacting protein on Ser239 mediates an interaction with breast-ovarian cancer susceptibility 1 and checkpoint function.
The signaling of DNA damage and replication stress involves a multitude of proteins, including the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), and proteins with BRCA1 COOH-terminal (BRCT) domains. The BRCT domain-containing proteins facilitate the phosphorylation of ATM/ATR substrates and can be coimmunoprecipitated with ATM or ATR. However, their mode of interac...
متن کاملA DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival.
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage-signaling pathways. Human DNA topoisomerase II binding protein 1 (TopBP1) contains eight BRCT motifs and shares sequence similarity with the fission yeast Rad4/Cut5 protein and the budding yeast DPB11 protein, both of which are required for DNA damage and/or replication checkpoint ...
متن کاملAtaxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM.
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts ...
متن کاملEstrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair.
DNA damage activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase signal cascade. How this system is restrained is not understood. We find that in estrogen receptor (ER)-positive breast cancer cells, UV or ionizing radiation and hydroxyurea rapidly activate ATR-dependent phosphorylation of endogenous p53 and Chk1. 17-beta-estradiol (E(2)) substantially blocks ATR activity via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 289 49 شماره
صفحات -
تاریخ انتشار 2014